Erratum: Stochastic cellular automata model for stock market dynamics [Phys. Rev. E 69, 046112 (2004)]

M. Bartolozzi and A. W. Thomas (Received 17 May 2006; published 12 June 2006)

DOI: 10.1103/PhysRevE.73.069901 PACS number(s): 05.45.Pq, 52.35.Mw, 47.20.Ky, 99.10.Cd

The definition of diffusion probability, p_d , for the cluster formation algorithm as reported in the paper was not sufficiently clear. A more exhaustive definition is the following:

 p_d is the probability, for *each* of its inactive neighbours, that an active trader *diffuses* and so becomes inactive, $\sigma_i(t) = \pm 1 \rightarrow \sigma_i(t+1) = 0$. Formally, the "switching-off" probability is $1 - (1 - p_d)^n$ where *n* is the number of inactive neighbours. Since $p_d \ll 1$, the former expression can be approximated as $\approx np_d$.

Moreover, the autocorrelation function used for the plot in Fig. 5 is not the one reported in Eq. (8), $c(\tau) = \sum_{t=1}^{T-\tau} x(t+\tau)x(t)$, but instead $\xi(\tau) = c(\tau)/c(0)$ where the variable x(t) is *not* normalized.

In addition, there were two misprints:

(1) In the caption of Fig. 1, H must be substituted with p_h .

(2) The exponent q in the left hand side of Eq. (16) is missing. Therefore, the correct expression is $\langle \epsilon(\delta, l)^q \rangle \propto \delta^{-K_q}$.